×
×

Error de autenticación

Ha habido un problema a la hora de conectarse a la red social. Por favor intentalo de nuevo

Si el problema persiste, nos lo puedes decir AQUÍ

×

20minutos.esMiembro desde: 24/01/11

20minutos.es

http://www.20minutos.es/

553
Posición en el Ranking
4
Usuarios seguidores
Sus noticias
RSS
  • Visitas
    24.325.472
  • Publicadas
    28.579
  • Puntos
    50
Veces compartidas
1.152
¡Consigue las insignias!
Trimestrales
Recientes
Visitas a noticias
Hace 6d

EP

  • Su estudio ha sido publicado en 'Scientific Reports'.

image

Un grupo de científicos, en un experimento de laboratorio, ha conseguido retroceder el estado de una computadora cuántica una fracción de segundo hacia atrás en el tiempo. En el estudio, publicado en Scientific Reports, también calcularon la probabilidad de que un electrón en el espacio interestelar vacío regrese espontáneamente a su pasado reciente.

"Este es uno de una serie de artículos sobre la posibilidad de violar la segunda ley de la termodinámica. Esa ley está estrechamente relacionada con la noción de la flecha del tiempo que postula la dirección del tiempo en sentido único desde el pasado al futuro", explica el autor principal del estudio, Gordey Lesovik, que dirige el Laboratorio de Física de la Tecnología de la Información Cuántica en MIPT (Moscow Institute of Physics and Technology).

"Comenzamos describiendo una llamada máquina de movimiento perpetuo local. Luego, en diciembre, publicamos un documento que analiza la violación de la segunda ley a través de un dispositivo llamado demonio de Maxwell ?señala Lesovik?. El artículo más reciente aborda el mismo problema desde un tercer ángulo: "Hemos creado artificialmente un estado que evoluciona en una dirección opuesta a la de la flecha termodinámica del tiempo".

La mayoría de las leyes de la física no hacen distinción entre el futuro y el pasado. Los físicos cuánticos de MIPT decidieron verificar si el tiempo podía revertirse espontáneamente al menos para una partícula individual y una pequeña fracción de segundo. Examinaron un electrón solitario en el espacio interestelar vacío. "Supongamos que el electrón está localizado cuando comencemos a observarlo. Esto significa que estamos bastante seguros de su posición en el espacio. Las leyes de la mecánica cuántica nos impiden conocerlo con absoluta precisión, pero podemos delinear una pequeña región donde el electrón está localizado", dice el coautor del estudio Andrey Lebedev de MIPT y ETH Zurich.

El físico explica que la evolución del estado electrónico se rige por la ecuación de Schrödinger. Aunque no hace distinción entre el futuro y el pasado, la región del espacio que contiene el electrón se expandirá muy rápidamente. Es decir, el sistema tiende a volverse más caótico. La incertidumbre de la posición del electrón está creciendo. Esto es análogo al creciente desorden en un sistema a gran escala, como una mesa de billar, debido a la segunda ley de la termodinámica. "Sin embargo, la ecuación de Schrödinger es reversible ?agrega Valerii Vinokur, coautora del artículo, del Laboratorio Nacional de Argonne, EE.UU?.

Matemáticamente, significa que, bajo una cierta transformación denominada conjugación compleja, la ecuación describirá una localización de electrones en una pequeña región del espacio durante el mismo período de tiempo". Aunque este fenómeno no se observa en la naturaleza, en teoría podría ocurrir debido a una fluctuación aleatoria en el fondo cósmico de microondas que impregna el universo. El equipo se dispuso a calcular la probabilidad de observar un electrón 'manchado' en una fracción de segundo, localizándose espontáneamente en su pasado reciente.

Más sobre

Resultó que incluso a lo largo de toda la vida del universo (13.700 millones de años), observando 10.000 millones de electrones localizados cada segundo, la evolución inversa del estado de la partícula solo sucedería una vez. E incluso en ese caso, el electrón no viajaría más que una simple diezmilmillonésima de segundo hacia el pasado. Los investigadores intentaron revertir el tiempo en un experimento de cuatro etapas. En lugar de un electrón, observaron el estado de una computadora cuántica formada por dos y más tarde tres elementos básicos llamados qubits superconductores.

  • Etapa 1: Orden. Cada qubit se inicializa en el estado fundamental, denotado como cero. Esta configuración altamente ordenada corresponde a un electrón localizado en una pequeña región.

  • Etapa 2: Degradación. El orden se pierde. Al igual que el electrón se mancha en una región cada vez más grande del espacio, el estado de los qubits se convierte en un patrón cambiante cada vez más complejo de ceros y unos. Esto se logra aplicando brevemente el programa de evolución en la computadora cuántica. En realidad, una degradación similar ocurriría por sí misma debido a las interacciones con el medio ambiente. Sin embargo, el programa controlado de evolución autónoma permitirá la última etapa del experimento.

  • Etapa 3: Inversión de tiempo. Un programa especial modifica el estado de la computadora cuántica de tal manera que luego evolucione "hacia atrás", desde el caos hacia el orden. Esta operación es similar a la fluctuación aleatoria del fondo de microondas en el caso del electrón, pero esta vez, se induce deliberadamente.

  • Etapa 4: Regeneración. Se aplica nuevamente el programa de evolución de la segunda etapa. Siempre que se haya hecho con éxito, el programa no resulta en más caos, sino que rebobina el estado de los qubits en el pasado, la forma en que un electrón manchado se localizaría.

Los investigadores encontraron que, en el 85% de los casos, la computadora cuántica de dos qubits volvió a su estado inicial. Cuando se involucraron tres qubits, ocurrieron más errores, lo que resultó en una tasa de éxito de aproximadamente 50%. Según los autores, estos errores se deben a imperfecciones en la computadora cuántica real.

A medida que se diseñan dispositivos más sofisticados, se espera que la tasa de error disminuya. Curiosamente, el algoritmo de inversión de tiempo en sí mismo podría resultar útil para hacer que las computadoras cuánticas sean más precisas. "Nuestro algoritmo podría actualizarse y usarse para probar programas escritos para computadoras cuánticas y eliminar el ruido y los errores", explica Lebedev.

Más recientes de 20minutos.es

Primer día laborable con multas en Madrid Central: las tiendas temen que los clientes se alejen

Primer día laborable con multas en Madrid Central: las tiendas temen que los clientes se alejen

F. P. El 71, 6% de los madrileños asegura en una encuesta que no irá al centro en coche para evitar sanciones.Guía informativa: todo lo que tienes que saber para conducir con las restricciones Hace 8h

Un estudio español revela el robo de datos masivos en teléfonos Android a través de las apps preinstaladas

Un estudio español revela el robo de datos masivos en teléfonos Android a través de las apps preinstaladas

EFE La investigación incluye más de 82.000 aplicaciones en 1.700 dispositivos Android fabricados por 214 marcas.Utilizan acceso privilegiado sin conocimiento del usuario a recursos del sistema para obtener datos personales Hace 8h

Una bebé nace 'embarazada' de su hermano gemelo

Una bebé nace 'embarazada' de su hermano gemelo

Es un extraño fenómeno conocido como 'gemelo parásito' y se da una vez entre un millón Hace 8h

El terror no avisa

El terror no avisa

JESÚS MORALES. PERIODISTA Todos los artículos de Jesús Morales en 20minutos.es.Después del ataque de Nueva Zelanda, el horror sacudió ayer Holanda. Otras veces las víctimas eran ciudadanos en un mercadillo navideño o turistas en lugares emblemáticos. El terror, en sus diferentes formas, no avisa Hace 8h

Echo de menos a Rajoy

Echo de menos a Rajoy

CARLOS GARCÍA MIRANDA. ESCRITOR La nostalgia que siento por Rajoy me tiene tan desconcertado como el lavado de cara que le ha hecho Casado al PP. Los que le acompañan en las listas rejuvenecen la foto, aunque también podría parecer una estampa en blanco y negro Hace 8h

Mostrando: 1-5 de 28.570